Elastin-like scaffolds for multiple-layered cell cultures
نویسندگان
چکیده
منابع مشابه
Mitotic and Nonmitotic Multiple-layered Perfusion Cultures
Cell types in addition to those previously described (Kruse et al. 1963. J. Nat. Cancer Inst. 31:109; Kruse and Miedema. 1965. J. Cell Biol. 27:273) were found to form multiple-layered cultures by perfusion-culture technique. Dense populations containing 43 x 10(6) embryonic rat muscle (NF-ER) cells, 23 x 10(6) diploid human tonsillar (NF-JAM) cells, 77 x 10(6) human pleural effusion isolate (R...
متن کاملElastin-Coated Biodegradable Photopolymer Scaffolds for Tissue Engineering Applications
One of the main open issues in modern vascular surgery is the nonbiodegradability of implants used for stent interventions, which can lead to small caliber-related thrombosis and neointimal hyperplasia. Some new, resorbable polymeric materials have been proposed to substitute traditional stainless-steel stents, but so far they were affected by poor mechanical properties and low biocompatibility...
متن کاملElectrospun poly(caprolactone)-elastin scaffolds for peripheral nerve regeneration
Peripheral nerve regeneration can be enhanced by chemical and mechanical cues for neurite growth. Aligned and randomly oriented electrospun nanofibers of poly(ε-caprolactone) (PCL) or a blend of PCL and elastin were fabricated to test their potential to provide contact guidance to embryonic chick dorsal root ganglia for peripheral nerve regeneration. Scanning electron microscopy was used to ana...
متن کاملToughening of Thermoresponsive Arrested Networks of Elastin-Like Polypeptides To Engineer Cytocompatible Tissue Scaffolds.
Formulation of tissue engineering or regenerative scaffolds from simple bioactive polymers with tunable structure and mechanics is crucial for the regeneration of complex tissues, and hydrogels from recombinant proteins, such as elastin-like polypeptides (ELPs), are promising platforms to support these applications. The arrested phase separation of ELPs has been shown to yield remarkably stiff,...
متن کاملSynthesis of Biocompatible Liquid Crystal Elastomer Foams as Cell Scaffolds for 3D Spatial Cell Cultures.
Here, we present a step-by-step preparation of a 3D, biodegradable, foam-like cell scaffold. These scaffolds were prepared by cross-linking star block co-polymers featuring cholesterol units as side-chain pendant groups, resulting in smectic-A (SmA) liquid crystal elastomers (LCEs). Foam-like scaffolds, prepared using metal templates, feature interconnected microchannels, making them suitable a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Frontiers in Bioengineering and Biotechnology
سال: 2016
ISSN: 2296-4185
DOI: 10.3389/conf.fbioe.2016.01.01049